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Resumo

Nesta monografia, foram calculadas propriedades de bésons interagentes e aprisionados em uma
armadilha harmonica utilizando o método variacional de Monte Carlo. O algoritmo é baseado
no principio variacional, o qual fornece um limite superior para a energia do estado fundamental,
e o método de Monte Carlo esta relacionado com o calculo das integrais multidimensionais
necessarias. Foram propostas func¢oes de onda variacionais dadas pelo produtoério de fungoes
de um corpo, as quais capturam o efeito da armadilha, e fungoes de pares que reproduzem o
espalhamento de esferas duras no limite de baixas energias da equagao de Schrodinger. Tais
funcgoes capturam as propriedades fisicas do estado fundamental desse sistema de muitos-corpos,
e foram usadas para determinar propriedades de interesse, como a energia por particula e as
distribuigoes espaciais para diferentes nimeros de bésons e comprimentos de espalhamento (que
coincidem com o didmetro de esfera dura dos atomos, pois as interagoes sdo repulsivas). Os
resultados puderam ser comparados com a teoria de campo médio nos limites forte e fracamente
interagentes, de onde foi possivel observar que o método de Monte Carlo variacional permite

estudar regimes além dos empregados na teoria de Gross-Pitaevskii.

Palavras-chave: Atomos frios. Bosons interagentes. Monte Carlo variacional.
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1 Introducao

1.1 Condensacao de Bose-Einstein

As primeiras realizagoes experimentais de um condensado de Bose-Einstein em 1995 com
gases atomicos diluidos deram inicio a um grande desenvolvimento dos estudos na area de gases

quénticos. Tais experimentos foram feitos inicialmente com vapores de ®Rb, "'Na e °Li (1) (2).

Os gases quanticos diluidos diferem dos gases classicos, dos liquidos e dos s6lidos em diversos
aspectos. A densidade de particulas no centro de um condensado de Bose-Einstein é tipicamente
da ordem de 10'® — 10'® cm~2. Por outro lado, a densidade de moléculas no ar & temperatura
ambiente ¢ 10 ecm™3. Em liquidos e sélidos, a densidade de dtomos é da ordem de 10?2 cm™3,
enquanto a densidade de niicleons no nicleo atéomico ¢ 103 cm™3. Para observar fenomenos
quanticos nesses sistemas de baixa densidade, as temperaturas devem ser da ordem de 1075 K
ou menores. Em contrapartida, nos sélidos, os efeitos quanticos sao mais fortes para elétrons em
metais abaixo da temperatura de Fermi, que é tipicamente 10* — 10° K, e para fonons abaixo
da temperatura de Debye que, em geral, é da ordem de 10 K. Para o *He liquido, os fenémenos
quanticos sao observados a temperaturas da ordem de 1 K. Nos niicleos atémicos, devido a alta

densidade de particulas, a temperatura de degenerescéncia do sistema é da ordem de 10! K.

Nuvens de gases frios possuem muitas vantagens na investigacao de fendémenos quanticos.
Em um condensado de Bose-Einstein fracamente interagente, essencialmente todos os atomos
ocupam o mesmo estado quéntico, e o sistema pode ser descrito pela teoria de campo médio. Isso
marca um contraste significativo com o *He liquido, que é um sistema fortemente interagente, e
entdo nao é bem descrito pela mesma aproximacao de campo médio. Apesar dos gases serem
diluidos, as interagoes desempenham um papel importante a baixas temperaturas, dando origem

a fendmenos coletivos relacionados aos que observamos em solidos, liquidos quanticos e ntcleos.

Experimentalmente, os gases quanticos sao sistemas interessantes de se medir pois podem
ser manipulados através de lasers e campos magnéticos. Além disso, as interagdes entre os
atomos podem ser mudadas adicionando diferentes espécies atomicas ou, para algumas espécies,
mudando a magnitude do campo magnético ou elétrico aplicado. Outra vantagem de estudar
esses sistemas é que, por conta das baixas densidades, as escalas de comprimento sao grandes e
a estrutura da funcao de onda do condensado pode ser investigada diretamente por técnicas

6pticas, tornando possivel analisar fend6menos de interferéncia, por exemplo.

A previsao teodrica da condensacao de Bose-Einstein ocorreu cerca de 100 anos atras. Depois
de Bose descrever a estatistica quantica do gas de fétons e deduzir a lei da radiagao de Planck
sem nenhuma referéncia a fisica classica, Einstein considerou um gas de bdsons massivos nao-

interagentes e concluiu que, abaixo de uma certa temperatura, uma fracao nao nula das particulas
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ocuparia o estado de menor energia do sistema.

Em 1938, Fritz London sugeriu uma conexio entre a superfluidez do *He liquido e a
condensacao de Bose-Einstein. Tal sistema teve um papel importante no desenvolvimento de
conceitos fisicos da area e é considerado um prototipo de condensado de Bose-Einstein. Contudo,
como citado anteriormente, por se tratar de um sistema fortemente interagente, mesmo em
T = 0K os atomos de “He liquido néo se encontram todos no estado de menor energia. Isso
dificultou as medig¢oes dos estados de menor energia diretamente e marcou uma busca por gases
de Bose fracamente interagentes com maiores fragoes condensadas. Como consequéncia dos
grandes avancos feitos no resfriamento a laser de metais alcalinos, tais atomos se tornaram
fortes candidatos a condensados de Bose-Einstein e foram usados nos primeiros experimentos de

sucesso que produziram atomos frios em laboratoério.

Dado um sistema de N bdésons confinados em um volume V', uma forma de relacionar a
temperatura de transicao de um condensado de Bose-Einstein com a densidade de particulas é
comparando o espacamento médio entre as particulas (que é da ordem de n Y3 onden=N /V)

e o comprimento de onda térmico de de Broglie, definido como

omh? 1/2

Ap= | ——
T mk:BT

(1.1)
Para altas temperaturas, Ay é pequeno e o gas se comporta classicamente. A condensacao de
Bose-Einstein em um gas ocorre quando a temperatura diminui até que Ay fique da ordem de
n~/3. Para dtomos alcalinos, como mencionado anteriormente, as densidades sdo da ordem de

10" — 10 ¢cm™3 e as temperaturas de transigao ficam entre 100 nK até a ordem de pK (3).

A proposta deste trabalho é a criacdo de uma simulagdo numérica de autoria propria
que calcula a energia total de um sistema de bdsons interagentes pelo método variacional de
Monte Carlo. Discutiremos como os resultados se relacionam com os temas fisicos abordados
neste capitulo. No capitulo 2, sdo discutidos os métodos numéricos e tedricos utilizados no
trabalho, apresentando as principais ideias do calculo do sistema de bosons interagentes e uma
comparacao com a aproximacao de campo médio no limite fracamente interagente. No capitulo
3, sao feitas discussoes sobre o significado fisico dos resultados obtidos e consideracoes sobre
o custo computacional das simulagoes. No capitulo 4, sao feitas as conclusoes finais sobre o
trabalho, incluindo perspectivas de possiveis aplicagdes interessantes para o estudo de sistemas

fortemente interagentes na area de gases e liquidos quanticos.



2 Metodologia

2.1 O método do encontro

Para lidar com os problemas unidimensionais de apenas uma particula da Mecanica Quantica,
uma abordagem numérica eficiente é o método do encontro (4). Trata-se de um método iterativo
para encontrar a energia do sistema a partir da equacao de Schréodinger com a derivada segunda
discretizada, ) )

_i@ N i = 24+ i

omdz? ~  2m (Az)?

onde 1); é o valor da fungao de onda no ponto x; = iAz, com 7 inteiro. Usando uma escala

~ (B = V(z:))i, (2.1)

de comprimento natural L do sistema, podemos redefinir as unidades do problema tais que
r=x/L, p(x) =(x)/L~V? E=EmL*/h* e V(z) = V(x)mL?/h*. Entdo, obtemos

Viv1 = 20; — i1 — 2(AZ)*(E — V(%)) (2.2)

Dados dois pontos iniciais, o potencial V(x) e uma energia E', a equacio 2.2 calcula os
valores de ¥ (x) em todos os pontos. Como, em geral, o potencial do problema nao é simétrico e
queremos impor que a funcao de onda se anula nas duas extremidades, ela é separada em duas
partes: uma a esquerda, 1y (x), e uma a direita, ¥ g(x). Nesse caso, 1, é integrada no intervalo

[xr, 0] € g é integrada em [z, xg|, onde xp é 0 ponto de encontro das duas fungoes.

E=-23 E=-15
1.27 “) ) 1.15 \l} )
P L L
126 — VR() i 1.14 VR(X) ]
1.14
1.25 1.13
124 113
x x
= 123 = 1.12
: 1.12
1.22 1.1
| 21 1.11
’ 1.10
1.20 1.10
130 132 134 136 138 140 1.42 1.44 1.46 132 134 136 138 140 142 144 146 148
X/Xq x/Xg
(a) E < Ey (b) E > Ej

Figura 1 — Encontro das fungoes de onda ¢;, e ¢g para E # FEy. Fonte: Elaborado pelo autor.

No entanto, sabemos que as solugoes fisicamente aceitas sao continuas, e além disso as suas
derivadas devem ser continuas (pois, em geral, vamos lidar com potenciais continuos). Para
lidar com esse problema, reescalamos uma das funcoes de modo que ¢y () = %w r(x) para
todo z no intervalo [z, x|, 0 que garante a continuidade. O préximo passo é analisar como as

derivadas se comportam em x,; de acordo com o chute para o valor de E.

L Por simplicidade, uma vez discutida a redefinicio de unidades para que as grandezas fiquem adimensionais,

vamos denotar Z — x, ) — ¢, E — F e assim por diante.
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Na Figura 1, vemos que as fung¢oes de onda nao sao suaves em x);. Nesse exemplo, foi
considerado o potencial de Lennard-Jones, V(z) = 4e [@)12 - (;)6}, come=10,0 =1c¢e
energia do estado fundamental £y ~ —1.89. No método do encontro, vemos que, a cada nova
iteracao, a energia é variada em torno de FEj para que as derivadas coincidam no ponto de

encontro entre ¢, e 1 g dentro de uma tolerancia pré-estabelecida.

2.2 O método variacional de Monte Carlo (VMC)

Na secao anterior, discutimos como obter a fun¢do de onda para problemas unidimensionais
de uma particula em potenciais continuos e assimétricos. Através da abordagem variacional,
podemos nos aproximar do estado fundamental de sistemas mais gerais usando o ansatz de

propor uma funcao de onda que captura o maximo de informagoes fisicas do problema, denotada

por Y.
2.2.1 O método variacional

Vamos considerar um sistema quantico descrito por um Hamiltoniano H e uma funcao
de onda qualquer ¥7(r) que respeita as condigdes de contorno do sistema. Se ¢, (r) forem os
autoestados de H, ou seja, Ho,(r) = E,¢,(r), sabemos que eles formam um conjunto completo

e portanto 1 (r) pode ser escrita como

o

Ur(r) = > cadu(r). (2.3)

n=0

O valor esperado de H, denotado por Er, é dado por

JvrH wTdSI'

Er=—"—w—0 2.4
L TP 24)

Pela ortogonalidade das autofungdes de operadores hermitianos,
[ G om()d = G, (2.5)

temos que

> Enleal > (En — Eo)|cal?

Er=1=)  —Fy4+2=L > Fy. (2.6)
> lenl? > lenl?

Ou seja, a energia Fr é limitada superiormente por Ejy. Esse fato nos permite propor fungoes
de onda 1 com parametros livres e minimiza-la com relacao a esse conjunto de parametros

para nos aproximarmos do estado fundamental (5).

2.2.2 O algoritmo de Metropolis

O método de Monte Carlo possibilita o calculo de diversas grandezas de interesse em

sistemas fisicos, entre elas, a sua energia total. Para realizar esse calculo, sdo usadas diversas
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configuragoes do sistema (posigoes das particulas no espago), onde cada uma delas tem associada
uma probabilidade de ocorréncia. Assim, a energia total do sistema é dada pela média das

energias de cada configuracao, ponderada por uma densidade de probabilidade de ocorréncia.

Um dos algoritmos que permite essa amostragem é o algoritmo de Metropolis, que obtém, a
cada passo, uma nova configuracao a partir da anterior, utilizando uma densidade de probabili-
dade dada por |7 |%. Isso garante que configuracoes mais provaveis ocorram com mais chance

na média das grandezas de interesse (6). Vamos considerar a seguinte expressao:

JupHedr Sl (B
B = e f|wT|2d3 “= [ (27)
e e (x)
Yp(r)]? _ Hip(r
= larpare ¢ P =0 25

sao, respectivamente, a densidade de probabilidade de encontrar a particula em uma posicao r

qualquer e a energia local da particula. O algoritmo de Metropolis tem a seguinte forma:

Sortear um vetor

Sortear uma confi- de coordenadas
---» guracgao aleatéria aleatoérias &, e
Io, onde wT(ro) ?é 0 J < M calcular Tnovo =

r; + (£ —1/2)A

Sim

risps = 1; ’ I'it1 = Tnovo ’

Calcular
Er(rit1)

Er = 3; 5y Br(r:) +@

Nesse fluxograma, o pardametro A determina a amplitude do deslocamento de cada particula,

¢ ¢ um numero aleatorio distribuido uniformemente no intervalo 0 < ¢ <1 e M é o nimero de

iteracoes. Note que no algoritmo de Metropolis nao é necessario sabermos o valor da constante
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de normalizagao [ [¢r|?d®r, pois ela nao depende da posigao r e portanto é cancelada na razao
P(Tnovo)/p(r;). Esse algoritmo é consideravelmente 1til em diversas aplicagoes na fisica, pois

permite a amostragem de qualquer distribuicao de probabilidade.

2.3 O Hamiltoniano do problema

Neste trabalho, consideramos um sistema de N bdsons de massa m confinados em um poten-
cial externo, Vi (r), e interagindo via um potencial de dois corpos, Vi (ry, r2). O Hamiltoniano

do problema é dado por (7)

N h?
H = Zl <_277’LVZ2 + ‘/eXt(ri)> + Z‘/int(r’h rj)) (29)

1<J

onde o potencial externo é dado por uma armadilha harmonica eliptica,
1
Vet () = g™ [wﬁo(xz +92) + wgzﬂ (2.10)

Nessa expressdo, wi, define a magnitude do potencial confinante. O deslocamento quadrético
médio de um tinico béson a T = 0K é (22) = h/2mwy,, e entdo an, = (h/mwye)/? define o
comprimento caracteristico da armadilha. A razao entre as frequéncias é denotada por A = w, /wp,,

e portanto a razio entre os comprimentos da armadilha é dada por ap,/a, = (w./wno)/? = V/A.

A interagao entre os bosons é dada por um potencial de pares de esferas duras:

Vine ([t = 15]) = {

0, se r;—r;| >a (2.11)
00, se |r;—rj| <a

onde a é o didmetro de esfera dura dos bdésons. Neste potencial, vemos que os bdsons ficam
livres uns dos outros se estao separados de uma distancia maior que a e sentem uma barreira
de potencial infinita se tentarem se aproximar de uma distancia menor que a. Introduzindo
comprimentos em unidades de ay,, ' = r/ay,, € energias em unidades de hwy,, 0 Hamiltoniano

é escrito como

H=_3 (Vi +y2 4+ 2%27) + 3 Viul|ri — 1)), (2.12)

1
25 i<j
Para descrever o estado fundamental do sistema, vamos propor uma funcao de onda variacional

dada pelo produtério de funcoes de uma particula g(r) e fungoes de pares f(|r; — rj|),
N
qJT(r17 - N, QL B) = H g(O‘a 5? ri) H f(a’ ‘ri - rj‘)? (213>
i=1 i<j
onde a e § sdo os parametros variacionais. Como resultado conhecido do oscilador harmonico

tridimensional, a funcao de um corpo é dada por uma gaussiana com anisotropia no eixo z,

g(a, B,1:) = exp [—a(a} + y} + 7)) (2.14)
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Para = 1, vemos que o caso isotrépico é recuperado, e para bésons nao-interagentes (a = 0),
temos novamente que o = 1/2ay,. A fungdo de pares usada ¢é a solugao exata da equacao de
Schrédinger para duas particulas interagindo via potencial de esfera dura no limite de baixas

energias k — 0,

0, ser<a

f(a,r):{ <1—%), se r>a (2.15)

onde r = |r; — r;|. Vemos que a func@o de onda variacional U7 tem a forma correta quando
r < a e se aproxima de um produtério de gaussianas quando r > a e ay, > a, que ¢é o limite
fracamente interagente. No caso mais geral, os parametros « e § descrevem o afastamento dos

bésons ao longo da armadilha quando o diametro a é aumentado.

Mais precisamente, o limite fracamete interagente é dado por a < ay, € a < n~'/3, onde
n = N/V é a densidade de nuimero. Isso significa que nesta situagao temos um carogo de
esfera dura muito menor que as dimensoes da armadilha e o espacamento entre as particulas,

[ = (V/N)'Y3. Para dtomos de metais alcalinos aprisionados, temos tipicamente na® < 107°.

Como no nosso caso de estudo hd condensagdo de Bose-Einstein, nA3 > 2.616, e entao
Ar > a ou ka < 1, onde k = 27/Ar. Nesse limite, a interacdo de duas esferas duras é bem
descrita pelo espalhamento de ondas-s a baixas energias, cujo comprimento de espalhamento ¢é
a. Essa interacao pode ser aproximada por um potencial de contato no regime a < A\r, de onde
obtemos a equacao de Gross-Pitaevskii na proxima se¢do. A partir dela, podemos comparar os
seus resultados com os obtidos pelo método de Monte Carlo. Como discutido acima, é esperado
que essa comparagio seja interessante no limite na® < 1, e para altas densidades (na® > 0.1), é
esperado que acontecam correlacoes de pares de curto alcance, que nao sao bem descritas pela

aproximacao de GP.

2.4 Equacao de Gross-Pitaevskii e as interacdes entre os atomos

A equagao de Gross-Pitaevskii descreve as propriedades de um gas de Bose nao uniforme a
T = 0K quando o comprimento de espalhamento a é muito menor que o espagamento entre os

atomos e as dimensoes do confinamento do sistema ~ ay,.

Na representacao de momento, a interagao efetiva entre duas particulas a baixas energias é
uma constante, Uy = 47h’a /m (8). No espago de coordenadas, isso corresponde a uma interagao
de contato Upd(r — r’), onde r e r' sdo as posi¢oes das duas particulas. Para calcular a energia
dos estados de muitos-corpos, usamos o método de Hartree ou de campo médio, assumindo que
a funcao de onda do sistema é um produtorio simetrizado de fun¢ées de onda de uma particula,

e todos os N bdsons estdo no mesmo estado denotado por ¢(r):
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N
U(ry,ry,...,ry) = H(b(r,-), (2.16)
i=1
onde as fungoes de uma particula sao normalizadas na forma

/d3r]¢(r)\2 ~1. (2.17)
Essa funcao de onda nao contém as correlacoes entre os atomos devido & interacao quando eles

estao préximos uns dos outros. Esses efeitos sdo levados em conta usando o potencial efetivo

Upd(r —r’). O Hamiltoniano efetivo do problema ¢é escrito como

H= Z [pl +V(r) ] + U Y6 — 1), (2.18)

1<j
onde V(r) é o potencial externo e p; - —ihV,;. A energia do estado ¥ é o valor esperado do

operador H,

E= /d3r1d3r2---dSrN\I/*(rl,rz,...,rN)H\If(rl,rg,...,rN)

_N / &r :—m¢ (r) V26 (r) +v<r>|¢(r)\2] + / Py dry

Uo 25(I‘i - 1) kl:[ |¢(rk)’2

1<j

+ (NQ_D / Prly|o(r)[*

G (N —1)
_ 3| 2 2 4
= [ |- s vt + vl + Y o]
(2.19)
Vamos agora apenas redefinir a fun¢ao de onda do estado condensado:
V() = N'26(r) — [ d*rlv(r) = N, (2.20)

de modo que a densidade de particulas é dada por n(r) = [ (r)|*> = N|¢(r)]?. Em termos de

Y*(r), a energia é escrita como

=[x |- g e v+ L

Para N > 1, obtemos

A=)y, W] (2.21)

~ [t [ v e v + Ly 222
2m 2 ' '

Vamos agora minimizar a energia com o vinculo N = [ d®r|¢(r)|?. Utilizando o método dos

multiplicadores de Lagrange, impomos que 6 — ud N = 0. Entao,

(= g o (0770 4 V) + S22 ) = e (0 ) 07 =0 229
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Efetuando as derivadas,

/f%};ﬁ%®+V®wﬂ+WWM%®—mm»&WZO (2.24)

Como a igualdade acima deve valer para qualquer variacao 6¢*, obtemos

2
(=35 774 V) + Gl ) = ) (229
que ¢ a equacao de Gross-Pitaevskii independente do tempo. Ela tem o mesmo formato da
equagao de Schrodinger, onde agora o potencial que atua nas particulas é a soma do potencial
externo V(r) com o termo nao-linear Up|t)(r)|?, que leva em conta o campo médio produzido
pelos outros bosons. Nessa aproximacao, a energia de interagao de um atomo em uma posicao
r ¢ dada pela densidade dos outros atomos nesse mesmo ponto vezes a interagao efetiva. O
autovalor desta equagao é o potencial quimico p, e ndo a energia por particula como na equacao
de Schrodinger. Para particulas nao interagentes no mesmo estado, o potencial quimico é igual

a energia por particula, mas para particulas interagentes nao.

Essa equacao também pode ser resolvida numericamente para armadilhas de diferentes
geometrias, de onde obtemos grandezas de interesse do problema, como a energia por particula e
o perfil de densidade do sistema. Neste trabalho, foi feita a comparagéo entre o método de Monte
Carlo e a teoria de campo médio através da simulagdo numérica da equagao de Gross-Pitaevskii
dependente do tempo para um potencial harmonico V(r). O algoritmo pronto utilizado para
para simular essa equacao com os mesmos parametros do codigo desenvolvido neste trabalho

esta disponivel em (9).
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3 Resultados

3.1 Oscilador harmonico unidimensional - Método do encontro

Com o método do encontro (equagao 2.2), foi possivel determinar o estado fundamental e os
estados excitados de uma particula em um oscilador harmoénico quantico unidimensional,

V(z) = ;ma)QxQ (3.1)

Para a equacao de Schrodinger desse sistema ser adimensional, tomamos z = z/L, onde
L =,/h/mw e E = E/hw. Os pardmetros utilizados foram Az =5 x 107, x;, = —5, xp =5 e
xyr = 0.2. Foi utilizada uma tolerancia ¢ = 1073 para a determinacdo dos valores de energia, e a
variagado da energia foi iniciada com o valor AE = 0.2. Quanto as condi¢oes de contorno, foi
definido para a solugao que ¢ (xr) = Yr(xg) =0 e Yr(vp + Ax) = Yr(xg — Ax) = 0.1Ax.

Na Figura 2, vemos as autofunc¢des normalizadas dos primeiros 3 estados do oscilador
harmonico. Vale ressaltar que os graficos dos estados excitados foram apenas deslocados da
origem para melhor visualizar todas as fun¢oes em uma tunica figura, mas todas as func¢oes estao

normalizadas.
45
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Figura 2 — Autoestados de menor energia do oscilador harmoénico quantico. Fonte: Elaborado
pelo autor.

Uma propriedade importante que podemos notar para essas fungoes é que todas elas tém
paridade bem definida, o que ja era esperado pelo oscilador harmonico se tratar de um potencial
par. Na Tabela 1, comparamos as autoenergias obtidas numericamente com as respectivas

respostas analiticas, E,/hiw = E, =n + 1/2.



Capitulo 3. Resultados 18

Tabela 1 — Comparacao das energias analiticas com os resultados numéricos. Fonte: Elaborado

pelo autor.
n | E, analitica | E, numérica | |AFE|
0 0.5000 0.5008 0.0008
1 1.5000 1.5008 0.0008
2 2.5000 2.5008 0.0008
3 3.5000 3.5008 0.0008
4 4.5000 4.5008 0.0008

Vemos que, no intervalo de erro, os resultados do método do encontro estao de acordo com
a expressao analitica. O erro obtido ja era esperado, pois a precisao da simulacao foi definida

como sendo € = 1073 e o algoritmo integra a func¢ao de onda enquanto |AE| > .

3.2 Oscilador harmonico tridimensional - VMC

Antes de resolver o Hamiltoniano dos bésons interagentes 2.12, consideramos N bdsons nao
interagentes em um oscilador harmonico tridimensional e anisotrépico,
1 N
H=33 (-Vi+af+of + X)), (3.2)
i=1
Considerando o Hamiltoniano 3.2, por se tratar de um sistema bosonico, foi proposta uma funcao

de onda variacional dada pelo produtério simetrizado das autofungoes de uma particula (5),
N N
\I]T<r17 ro,... ,I'N) = H g(Oé, 57 ri) = H exXp I:_Oé(x? + yzz + BZZZ):|7 (33>
i=1 i=1

onde « e  sdo os parametros variacionais do problema. A ideia do método variacional é variar
« e [3 para determinar a energia minima do sistema. Para cada conjunto de pardmetros («, f3),
a energia converge para um determinado valor (Figura 3a), que é dado pela amostragem das
posicoes das particulas de acordo com a ponderacao definida pela funcao de onda variacional
U (10). Na Figura 3, vemos a determinacao do estado fundamental do Hamiltoniano 3.2, com
N =100 e A = /2, usando a funcéo de onda variacional 3.3.
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Figura 3 — Exemplo de resultados para NN fixo. Fonte: Elaborado pelo autor.

A consideracao desse sistema foi um passo importante na realizacao deste trabalho pois ele
tem solugao analitica, cuja funcao de onda é dada pelo produtoério das fungoes de um corpo,
como em 3.3, com o = 0.5 e f = A = /2 para a anisotropia no eixo z. O estado fundamental
desse sistema tem autoenergia dada por

b (3o e ) -w (i),

5T513 (3.4)

Na Tabela 2, comparamos essas solugoes com o resultado do método variacional.

Tabela 2 — Comparacao das autoenergias 3.4 com o método VMC. Fonte: Elaborado pelo autor.

N Ey analitica Ey numérica |AFE|
10 | 17.07106781187 | 17.07106781189 | 2 x 10~
50 | 85.35533905933 | 85.35533905926 | 7 x 10~
100 | 170.7106781187 | 170.7106781185 | 2 x 10~
250 | 426.7766952966 | 426.7766952964 | 2 x 10~
500 | 853.5533905933 | 853.5533905929 | 4 x 10~
1000 | 1707.106781187 | 1707.106781185 | 2 x 10~

Nas simulagoes, foi utilizado um total de passos M =5 x 10%. O erro |AE| foi calculado de

acordo com o desvio padrao o da amostra de dados, que mede a dispersao dos dados em relacao

ao valor médio da amostra. Vemos que os resultados concordam dentro do intervalo de incerteza.

3.3 Sistema de bdsons interagentes

Com os resultados numéricos do caso nao-interagente, foi possivel estudar o efeito da interacao

de pares a partir do método de Monte Carlo. Considerando o Hamiltoniano 2.12, onde A = /2
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e a =4 x 1073, inicialmente foram obtidos os resultados da equacao de Gross-Pitaevskii a partir
da sua simulagdo numérica (9). Na Figura 4, apresentamos um corte em y = 0 e z = 0 das

fungoes de onda para diferentes valores de NN.

0.50 NTR ‘
N=100 =
0.45 N=200 =+
/ N=500
N=1000 - |
0.40 < N = 2500
R N = 5000
0.35 [ pin) N=10000 - -
0.30
)
S 025
=
0.20
0.15
0.10
0.05
000 Loclocoocomsitoionid®® | 001 00000 | g e e

0
X/Xq

Figura 4 — Autofuncoes da equacao de GP com a = 4 x 1073, Fonte: Elaborado pelo autor.

Com esse resultado, podemos notar algumas propriedades interessantes do sistema: primei-
ramente, como esperado, para N muito pequeno, a fun¢ao de onda do sistema se assemelha a
uma gaussiana. Para N grande, vemos que a func¢ao de onda tem alcances maiores em x, pois

nesse regime o potencial repulsivo passa a competir com o potencial confinante.

No método de Monte Carlo, para que a solugao esteja proxima do estado fundamental,
sabemos que ¥, deve se aproximar da densidade de probabilidade de encontrar os bdsons
na armadilha. Entao, podemos usar o resultado acima e notar o que deve ser feito com os
parametros a e J da expressao 2.14: dado que a largura da gaussiana deve aumentar, entao «
deve diminuir em relacao ao caso nao-interagente, ayg = 0.5. Além disso, devido a anisotropia
A > 1 no eixo z, a nova funcao de onda deve continuar sendo mais estreita nessa direcao e

portanto 3 deve aumentar em relacdo a By = A = v/2.

Entao, o primeiro passo foi determinar a dependéncia da energia com os parametros « e (8

na simulacdo de Monte Carlo. Na Figura 5, vemos alguns exemplos.
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o

Figura 5 — Dependéncia da energia com os parametros variacionais « e (3. Fonte: Elaborado

pelo autor.

Como vemos acima, para cada N, foram usados 25 pares de pardmetros variacionais (o, ),

com valores préximos aos do caso nao interagente o = 0.5 e 5 = /2. Esse procedimento foi

repetido até N = 10* bésons, de onde foi possivel avaliar a dependéncia da energia por particula.

E/N

25 /
2.0

/

GP
VMC

5
0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N

Figura 6 — Energias por particula calculadas através da equagao de Gross-Pitaevskii (GP) e do

método variacional de Monte Carlo (MC). Fonte: Elaborado pelo autor.
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Na Figura 6, vemos que no caso interagente a energia por particula ndo é mais constante.
Além disso, pode-se notar que os resultados da teoria de campo médio e do método de Monte
Carlo passam a nao concordar para N da ordem de 10 — 10*. Isso ocorre porque nesse caso
estamos lidando com o regime fortemente interagente. Como foi mencionado anteriormente, para
metais alcalinos aprisionados no limite fracamente interagente, temos na® < 107°. No nosso
estudo, consideramos o comprimento de espalhamento a/ay, = 4 x 1073 para simular um gés de

87Rb, e portanto para N da ordem de 10* obtemos na® ~ 10~%.

Através das simulagoes de Monte Carlo, também foi possivel obter o perfil de densidade dos
atomos dentro da armadilha harmonica. O procedimento foi feito para N = 64 com diferentes
comprimentos de espalhamento. Na Figura 7, podemos observar propriedades interessantes do
nosso resultado: no limite em que o comprimento de espalhamento é muito maior que agy, a
densidade dos atomos é aproximadamente homogénea até uma certa distancia finita dy e tende
a zero nas bordas da armadilha. Esse resultado esta de acordo com o esperado, pois o potencial
harmonico tende a aproximar os bdsons da origem, enquanto o potencial repulsivo afasta um
em relacao ao outro. Além disso, as densidades tém alcances maiores conforme o comprimento
de espalhamento aumenta, o que também esta de acordo com a competicao entre o potencial

repulsivo e o confinamento harmonico.
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Figura 7 — Perfis de densidade n(r) da armadilha harmonica. Fonte: Elaborado pelo autor.

3.4 Aspectos computacionais

Com os resultados apresentados na se¢ao anterior, foi possivel verificar a validade das respostas

da simulacao numérica desenvolvida neste trabalho, pois as energias por particula concordam
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de maneira satisfatoria com a teoria de campo médio no regime fracamente interagente. Vale
notar que o custo computacional necessario para resolver a evolucao em tempo imaginario na
equacao de Gross-Pitaevskii é significativamente menor que o do método variacional de Monte
Carlo. Entao, para resolver sistemas fracamente interagentes, a equacao de Gross-Pitaevskii é a

alternativa mais adequada.

Quanto ao custo computacional do método variacional de Monte Carlo, a simulacao desenvol-
vida neste trabalho calcula todas as possiveis interagoes de pares em uma dada configuragao do
algoritmo de Metropolis, que no total sao N(IN — 1)/2, onde N é o nimero de bésons. Para N
grande, o total de interacoes é proporcional a N2. Portanto, considerando M passos de Monte
Carlo, a complexidade do algoritmo escala com O(N?M). Isso foi verificado durante a execucio
do programa: quando N dobra, por exemplo, o tempo gasto é multiplicado por 4 para o mesmo
numero M de passos. Além disso, como discutido anteriormente, o método de Monte Carlo
converge para a energia do estado fundamental apds um certo tempo de equilibracao. Entao,

para que o resultado esteja dentro do esperado, é necessario que M seja suficientemente grande.

Esse fator levou ao uso do cluster Heaviside disponibilizado pelo IFSC-USP, de modo que foi
possivel executar todos os conjuntos de parametros variacionais simultaneamente. A execucao
dos codigos foi feita através do sistema de filas, que distribui as simulagdes da forma mais
eficiente entre os nés do cluster (cada né possui 2 processadores de 8 ntcleos fisicos). Para

N ~ 10%, o tempo de execucdo foi da ordem de 1 semana, utilizando M = 2.5 x 10*.

Contudo, existem caminhos de otimizacao para esse processo. Um deles, que foi utilizado neste
trabalho, é executar a simulacao até um ntimero de passos menor que M e salvar as posi¢oes dos
atomos em um arquivo de output, que é posteriormente usado como o input da nova simulagao.
Isso garante que a energia média comece a partir da energia local da ultima configuracao do
arquivo output e as configuragoes mais provaveis contribuam mais rapidamente. Outra possivel
aceleracao do processo de convergéncia ocorre a partir da geracao das configuracoes iniciais ro com
numeros aleatérios que obedecem uma distribuicao gaussiana de probabilidades. Isso também
foi feito neste trabalho, através da transformagao de Box-Miiller (11), que converte nimeros
aleatérios de distribuigoes uniformes em distribuicoes gaussianas. Nesse caso, as configuragoes
iniciais tém formatos mais proximos da distribuicao de probabilidade que queremos amostrar

(dada por |7(r)|?) e foi possivel a convergéncia do algoritmo para N grande em tempo hébil.
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4 Conclusao

Neste trabalho, produzimos um cédigo que implementa o método variacional de Monte
Carlo e o utilizamos para calcular propriedades de um sistema de muitos-corpos formado por
boésons interagentes em uma armadilha harmodnica, tais como a energia por particula e o perfil
de densidade. Comparamos os resultados obtidos com solug¢oes numéricas da equacao de Gross-
Pitaevskii utilizando o cédigo disponivel em (9). Os resultados concordaram com a teoria de
campo médio no limite fracamente interagente, o que validou o algoritmo que foi construido e
permitiu a consideragao do caso fortemente interagente, o qual nao é descrito pela equacao de

Gross-Pitaevskii.

Com base nos resultados deste trabalho, podemos concluir que o método variacional de
Monte Carlo é uma ferramenta poderosa e versatil no célculo de propriedades de sistemas
quanticos. As vantagens da implementagao deste método consistem na amostragem de qualquer
distribuicdo de probabilidade [¢7(r)]? e o estudo de sistemas fortemente interagentes, como foi

observado no limite de altas densidades.

Esses fatores tornam possivel aplicar o algoritmo de Metropolis para calcular observaveis e
distribuigoes espaciais em sistemas de interesse tedrico e experimental, como gases bosénicos
em outros tipos de armadilhas e “He liquido, por exemplo. Como perspectiva futura, vale notar
que o codigo desenvolvido em Fortran90 neste trabalho pode ser diretamente adaptado para
estudar esses sistemas, com algumas alteragdes na funcao de onda variacional e no Hamiltoniano.
Empregamos fungoes de onda simétricas pela troca de particulas, pois estudamos sistemas
bosonicos. No futuro, podemos considerar implementar fungoes de onda antissimétricas para
descrever sistemas fermidnicos de interesse para a fisica atomica, tais como gases de Fermi

degenerados.
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