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Resumo
Nesta monografia, foram calculadas propriedades de bósons interagentes e aprisionados em uma
armadilha harmônica utilizando o método variacional de Monte Carlo. O algoritmo é baseado
no princípio variacional, o qual fornece um limite superior para a energia do estado fundamental,
e o método de Monte Carlo está relacionado com o cálculo das integrais multidimensionais
necessárias. Foram propostas funções de onda variacionais dadas pelo produtório de funções
de um corpo, as quais capturam o efeito da armadilha, e funções de pares que reproduzem o
espalhamento de esferas duras no limite de baixas energias da equação de Schrödinger. Tais
funções capturam as propriedades físicas do estado fundamental desse sistema de muitos-corpos,
e foram usadas para determinar propriedades de interesse, como a energia por partícula e as
distribuições espaciais para diferentes números de bósons e comprimentos de espalhamento (que
coincidem com o diâmetro de esfera dura dos átomos, pois as interações são repulsivas). Os
resultados puderam ser comparados com a teoria de campo médio nos limites forte e fracamente
interagentes, de onde foi possível observar que o método de Monte Carlo variacional permite
estudar regimes além dos empregados na teoria de Gross-Pitaevskii.

Palavras-chave: Átomos frios. Bósons interagentes. Monte Carlo variacional.
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1 Introdução
1.1 Condensação de Bose-Einstein

As primeiras realizações experimentais de um condensado de Bose-Einstein em 1995 com
gases atômicos diluídos deram início a um grande desenvolvimento dos estudos na área de gases
quânticos. Tais experimentos foram feitos inicialmente com vapores de 87Rb, 11Na e 3Li (1) (2).

Os gases quânticos diluídos diferem dos gases clássicos, dos líquidos e dos sólidos em diversos
aspectos. A densidade de partículas no centro de um condensado de Bose-Einstein é tipicamente
da ordem de 1013 − 1015 cm−3. Por outro lado, a densidade de moléculas no ar à temperatura
ambiente é 1019 cm−3. Em líquidos e sólidos, a densidade de átomos é da ordem de 1022 cm−3,
enquanto a densidade de núcleons no núcleo atômico é 1038 cm−3. Para observar fenômenos
quânticos nesses sistemas de baixa densidade, as temperaturas devem ser da ordem de 10−5 K
ou menores. Em contrapartida, nos sólidos, os efeitos quânticos são mais fortes para elétrons em
metais abaixo da temperatura de Fermi, que é tipicamente 104 − 105 K, e para fônons abaixo
da temperatura de Debye que, em geral, é da ordem de 102 K. Para o 4He líquido, os fenômenos
quânticos são observados a temperaturas da ordem de 1 K. Nos núcleos atômicos, devido à alta
densidade de partículas, a temperatura de degenerescência do sistema é da ordem de 1011 K.

Nuvens de gases frios possuem muitas vantagens na investigação de fenômenos quânticos.
Em um condensado de Bose-Einstein fracamente interagente, essencialmente todos os átomos
ocupam o mesmo estado quântico, e o sistema pode ser descrito pela teoria de campo médio. Isso
marca um contraste significativo com o 4He líquido, que é um sistema fortemente interagente, e
então não é bem descrito pela mesma aproximação de campo médio. Apesar dos gases serem
diluídos, as interações desempenham um papel importante a baixas temperaturas, dando origem
a fenômenos coletivos relacionados aos que observamos em sólidos, líquidos quânticos e núcleos.

Experimentalmente, os gases quânticos são sistemas interessantes de se medir pois podem
ser manipulados através de lasers e campos magnéticos. Além disso, as interações entre os
átomos podem ser mudadas adicionando diferentes espécies atômicas ou, para algumas espécies,
mudando a magnitude do campo magnético ou elétrico aplicado. Outra vantagem de estudar
esses sistemas é que, por conta das baixas densidades, as escalas de comprimento são grandes e
a estrutura da função de onda do condensado pode ser investigada diretamente por técnicas
ópticas, tornando possível analisar fenômenos de interferência, por exemplo.

A previsão teórica da condensação de Bose-Einstein ocorreu cerca de 100 anos atrás. Depois
de Bose descrever a estatística quântica do gás de fótons e deduzir a lei da radiação de Planck
sem nenhuma referência à física clássica, Einstein considerou um gás de bósons massivos não-
interagentes e concluiu que, abaixo de uma certa temperatura, uma fração não nula das partículas
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ocuparia o estado de menor energia do sistema.

Em 1938, Fritz London sugeriu uma conexão entre a superfluidez do 4He líquido e a
condensação de Bose-Einstein. Tal sistema teve um papel importante no desenvolvimento de
conceitos físicos da área e é considerado um protótipo de condensado de Bose-Einstein. Contudo,
como citado anteriormente, por se tratar de um sistema fortemente interagente, mesmo em
T = 0K os átomos de 4He líquido não se encontram todos no estado de menor energia. Isso
dificultou as medições dos estados de menor energia diretamente e marcou uma busca por gases
de Bose fracamente interagentes com maiores frações condensadas. Como consequência dos
grandes avanços feitos no resfriamento a laser de metais alcalinos, tais átomos se tornaram
fortes candidatos a condensados de Bose-Einstein e foram usados nos primeiros experimentos de
sucesso que produziram átomos frios em laboratório.

Dado um sistema de N bósons confinados em um volume V , uma forma de relacionar a
temperatura de transição de um condensado de Bose-Einstein com a densidade de partículas é
comparando o espaçamento médio entre as partículas (que é da ordem de n−1/3, onde n ≡ N/V )
e o comprimento de onda térmico de de Broglie, definido como

λT =
(

2πh̄2

mkBT

)1/2

. (1.1)

Para altas temperaturas, λT é pequeno e o gás se comporta classicamente. A condensação de
Bose-Einstein em um gás ocorre quando a temperatura diminui até que λT fique da ordem de
n−1/3. Para átomos alcalinos, como mencionado anteriormente, as densidades são da ordem de
1013 − 1015 cm−3 e as temperaturas de transição ficam entre 100 nK até a ordem de µK (3).

A proposta deste trabalho é a criação de uma simulação numérica de autoria própria
que calcula a energia total de um sistema de bósons interagentes pelo método variacional de
Monte Carlo. Discutiremos como os resultados se relacionam com os temas físicos abordados
neste capítulo. No capítulo 2, são discutidos os métodos numéricos e teóricos utilizados no
trabalho, apresentando as principais ideias do cálculo do sistema de bósons interagentes e uma
comparação com a aproximação de campo médio no limite fracamente interagente. No capítulo
3, são feitas discussões sobre o significado físico dos resultados obtidos e considerações sobre
o custo computacional das simulações. No capítulo 4, são feitas as conclusões finais sobre o
trabalho, incluindo perspectivas de possíveis aplicações interessantes para o estudo de sistemas
fortemente interagentes na área de gases e líquidos quânticos.
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2 Metodologia
2.1 O método do encontro

Para lidar com os problemas unidimensionais de apenas uma partícula da Mecânica Quântica,
uma abordagem numérica eficiente é o método do encontro (4). Trata-se de um método iterativo
para encontrar a energia do sistema a partir da equação de Schrödinger com a derivada segunda
discretizada,

− h̄2

2m
d2ψ

dx2 ≈ − h̄2

2m

[
ψi+1 − 2ψi + ψi−1

(∆x)2

]
≈ (E − V (xi))ψi, (2.1)

onde ψi é o valor da função de onda no ponto xi = i∆x, com i inteiro. Usando uma escala
de comprimento natural L do sistema, podemos redefinir as unidades do problema tais que
x̄ ≡ x/L, ψ̄(x̄) = ψ(x)/L−1/2, Ē ≡ EmL2/h̄2 e V̄ (x̄) = V (x)mL2/h̄2. Então, obtemos

ψ̄i+1 = 2ψ̄i − ψ̄i−1 − 2(∆x̄)2(Ē − V̄ (x̄i))ψ̄i (2.2)

Dados dois pontos iniciais, o potencial V (x) e uma energia E1, a equação 2.2 calcula os
valores de ψ(x) em todos os pontos. Como, em geral, o potencial do problema não é simétrico e
queremos impor que a função de onda se anula nas duas extremidades, ela é separada em duas
partes: uma à esquerda, ψL(x), e uma à direita, ψR(x). Nesse caso, ψL é integrada no intervalo
[xL, xM ] e ψR é integrada em [xM , xR], onde xM é o ponto de encontro das duas funções.
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Figura 1 – Encontro das funções de onda ψL e ψR para E ̸= E0. Fonte: Elaborado pelo autor.

No entanto, sabemos que as soluções fisicamente aceitas são contínuas, e além disso as suas
derivadas devem ser contínuas (pois, em geral, vamos lidar com potenciais contínuos). Para
lidar com esse problema, reescalamos uma das funções de modo que ψ̃L(x) = ψR(xM )

ψL(xM )ψL(x) para
todo x no intervalo [xL, xM ], o que garante a continuidade. O próximo passo é analisar como as
derivadas se comportam em xM de acordo com o chute para o valor de E.
1 Por simplicidade, uma vez discutida a redefinição de unidades para que as grandezas fiquem adimensionais,

vamos denotar x̄ → x, ψ̄ → ψ, Ē → E e assim por diante.
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Na Figura 1, vemos que as funções de onda não são suaves em xM . Nesse exemplo, foi
considerado o potencial de Lennard-Jones, V (x) = 4ε

[(
σ
x

)12
−
(
σ
x

)6
]
, com ε = 10, σ = 1 e

energia do estado fundamental E0 ≈ −1.89. No método do encontro, vemos que, a cada nova
iteração, a energia é variada em torno de E0 para que as derivadas coincidam no ponto de
encontro entre ψL e ψR dentro de uma tolerância pré-estabelecida.

2.2 O método variacional de Monte Carlo (VMC)
Na seção anterior, discutimos como obter a função de onda para problemas unidimensionais

de uma partícula em potenciais contínuos e assimétricos. Através da abordagem variacional,
podemos nos aproximar do estado fundamental de sistemas mais gerais usando o ansatz de
propor uma função de onda que captura o máximo de informações físicas do problema, denotada
por ψT .

2.2.1 O método variacional

Vamos considerar um sistema quântico descrito por um Hamiltoniano H e uma função
de onda qualquer ψT (r) que respeita as condições de contorno do sistema. Se ϕn(r) forem os
autoestados de H, ou seja, Hϕn(r) = Enϕn(r), sabemos que eles formam um conjunto completo
e portanto ψT (r) pode ser escrita como

ψT (r) =
∞∑
n=0

cnϕn(r). (2.3)

O valor esperado de H, denotado por ET , é dado por

ET =
∫
ψ∗
THψTd

3r∫
|ψT |2d3r

. (2.4)

Pela ortogonalidade das autofunções de operadores hermitianos,∫
ϕ∗
n(r)ϕm(r)d3r = δn,m, (2.5)

temos que

ET =

∞∑
n=0

En|cn|2

∞∑
n=0

|cn|2
= E0 +

∞∑
n=1

(En − E0)|cn|2

∞∑
n=0

|cn|2
≥ E0. (2.6)

Ou seja, a energia ET é limitada superiormente por E0. Esse fato nos permite propor funções
de onda ψT com parâmetros livres e minimizá-la com relação a esse conjunto de parâmetros
para nos aproximarmos do estado fundamental (5).

2.2.2 O algoritmo de Metropolis

O método de Monte Carlo possibilita o cálculo de diversas grandezas de interesse em
sistemas físicos, entre elas, a sua energia total. Para realizar esse cálculo, são usadas diversas
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configurações do sistema (posições das partículas no espaço), onde cada uma delas tem associada
uma probabilidade de ocorrência. Assim, a energia total do sistema é dada pela média das
energias de cada configuração, ponderada por uma densidade de probabilidade de ocorrência.

Um dos algoritmos que permite essa amostragem é o algoritmo de Metropolis, que obtém, a
cada passo, uma nova configuração a partir da anterior, utilizando uma densidade de probabili-
dade dada por |ψT |2. Isso garante que configurações mais prováveis ocorram com mais chance
na média das grandezas de interesse (6). Vamos considerar a seguinte expressão:

ET =
∫
ψ∗
THψTd

3r∫
|ψT |2d3r

=
∫

|ψT |2
(
HψT

ψT

)
d3r∫

|ψT |2d3r
=
∫
p(r)EL(r)d3r, (2.7)

onde
p(r) = |ψT (r)|2∫

|ψT |2d3r
e EL(r) = HψT (r)

ψT (r) (2.8)

são, respectivamente, a densidade de probabilidade de encontrar a partícula em uma posição r
qualquer e a energia local da partícula. O algoritmo de Metropolis tem a seguinte forma:

Sortear uma confi-
guração aleatória

r0, onde ψT (r0) ̸= 0
Início

Sortear um vetor
de coordenadas
aleatórias ξ, e

calcular rnovo =
ri + (ξ − 1/2)∆

p(rnovo)
p(ri) ≥ ζ?

ri+1 = rnovori+1 = ri

Calcular
EL(ri+1)

ET = 1
M

∑M
i=1 EL(ri) Fim

SimNão

i ≤ M

Nesse fluxograma, o parâmetro ∆ determina a amplitude do deslocamento de cada partícula,
ζ é um número aleatório distribuído uniformemente no intervalo 0 ≤ ζ ≤ 1 e M é o número de
iterações. Note que no algoritmo de Metropolis não é necessário sabermos o valor da constante
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de normalização
∫

|ψT |2d3r, pois ela não depende da posição r e portanto é cancelada na razão
p(rnovo)/p(ri). Esse algoritmo é consideravelmente útil em diversas aplicações na física, pois
permite a amostragem de qualquer distribuição de probabilidade.

2.3 O Hamiltoniano do problema
Neste trabalho, consideramos um sistema de N bósons de massa m confinados em um poten-

cial externo, Vext(r), e interagindo via um potencial de dois corpos, Vint(r1, r2). O Hamiltoniano
do problema é dado por (7)

H =
N∑
i=1

(
− h̄2

2m∇2
i + Vext(ri)

)
+
∑
i<j

Vint(ri, rj), (2.9)

onde o potencial externo é dado por uma armadilha harmônica elíptica,

Vext(r) = 1
2m

[
ω2

ho(x2 + y2) + ω2
zz

2
]

(2.10)

Nessa expressão, ω2
ho define a magnitude do potencial confinante. O deslocamento quadrático

médio de um único bóson a T = 0K é ⟨x2⟩ = h̄/2mωho, e então aho = (h̄/mωho)1/2 define o
comprimento característico da armadilha. A razão entre as frequências é denotada por λ = ωz/ωho,
e portanto a razão entre os comprimentos da armadilha é dada por aho/az = (ωz/ωho)1/2 =

√
λ.

A interação entre os bósons é dada por um potencial de pares de esferas duras:

Vint(|ri − rj|) =

 0, se |ri − rj| ≥ a

∞, se |ri − rj| < a
(2.11)

onde a é o diâmetro de esfera dura dos bósons. Neste potencial, vemos que os bósons ficam
livres uns dos outros se estão separados de uma distância maior que a e sentem uma barreira
de potencial infinita se tentarem se aproximar de uma distância menor que a. Introduzindo
comprimentos em unidades de aho, r′ = r/aho, e energias em unidades de h̄ωho, o Hamiltoniano
é escrito como

H = 1
2

N∑
i=1

(
−∇2

i + x2
i + y2

i + λ2z2
i

)
+
∑
i<j

Vint(|ri − rj|). (2.12)

Para descrever o estado fundamental do sistema, vamos propor uma função de onda variacional
dada pelo produtório de funções de uma partícula g(r) e funções de pares f(|ri − rj|),

ΨT (r1, . . . , rN , α, β) =
N∏
i=1

g(α, β, ri)
∏
i<j

f(a, |ri − rj|), (2.13)

onde α e β são os parâmetros variacionais. Como resultado conhecido do oscilador harmônico
tridimensional, a função de um corpo é dada por uma gaussiana com anisotropia no eixo z,

g(α, β, ri) = exp
[
−α(x2

i + y2
i + βz2

i )
]

(2.14)
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Para β = 1, vemos que o caso isotrópico é recuperado, e para bósons não-interagentes (a = 0),
temos novamente que α = 1/2aho. A função de pares usada é a solução exata da equação de
Schrödinger para duas partículas interagindo via potencial de esfera dura no limite de baixas
energias k → 0,

f(a, r) =


(
1 − a

r

)
, se r > a

0, se r ≤ a
(2.15)

onde r ≡ |ri − rj|. Vemos que a função de onda variacional ΨT tem a forma correta quando
r ≤ a e se aproxima de um produtório de gaussianas quando r ≫ a e aho ≫ a, que é o limite
fracamente interagente. No caso mais geral, os parâmetros α e β descrevem o afastamento dos
bósons ao longo da armadilha quando o diâmetro a é aumentado.

Mais precisamente, o limite fracamete interagente é dado por a ≪ aho e a ≪ n−1/3, onde
n ≡ N/V é a densidade de número. Isso significa que nesta situação temos um caroço de
esfera dura muito menor que as dimensões da armadilha e o espaçamento entre as partículas,
l ≡ (V/N)1/3. Para átomos de metais alcalinos aprisionados, temos tipicamente na3 ≤ 10−5.

Como no nosso caso de estudo há condensação de Bose-Einstein, nλ3
T ≥ 2.616, e então

λT ≫ a ou ka ≪ 1, onde k = 2π/λT . Nesse limite, a interação de duas esferas duras é bem
descrita pelo espalhamento de ondas-s a baixas energias, cujo comprimento de espalhamento é
a. Essa interação pode ser aproximada por um potencial de contato no regime a ≪ λT , de onde
obtemos a equação de Gross-Pitaevskii na próxima seção. A partir dela, podemos comparar os
seus resultados com os obtidos pelo método de Monte Carlo. Como discutido acima, é esperado
que essa comparação seja interessante no limite na3 ≪ 1, e para altas densidades (na3 ≥ 0.1), é
esperado que aconteçam correlações de pares de curto alcance, que não são bem descritas pela
aproximação de GP.

2.4 Equação de Gross-Pitaevskii e as interações entre os átomos
A equação de Gross-Pitaevskii descreve as propriedades de um gás de Bose não uniforme a

T = 0K quando o comprimento de espalhamento a é muito menor que o espaçamento entre os
átomos e as dimensões do confinamento do sistema ∼ aho.

Na representação de momento, a interação efetiva entre duas partículas a baixas energias é
uma constante, U0 = 4πh̄2a/m (8). No espaço de coordenadas, isso corresponde a uma interação
de contato U0δ(r − r′), onde r e r′ são as posições das duas partículas. Para calcular a energia
dos estados de muitos-corpos, usamos o método de Hartree ou de campo médio, assumindo que
a função de onda do sistema é um produtório simetrizado de funções de onda de uma partícula,
e todos os N bósons estão no mesmo estado denotado por ϕ(r):
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Ψ(r1, r2, . . . , rN) =
N∏
i=1

ϕ(ri), (2.16)

onde as funções de uma partícula são normalizadas na forma∫
d3r|ϕ(r)|2 = 1. (2.17)

Essa função de onda não contém as correlações entre os átomos devido à interação quando eles
estão próximos uns dos outros. Esses efeitos são levados em conta usando o potencial efetivo
U0δ(r − r′). O Hamiltoniano efetivo do problema é escrito como

H =
N∑
i=1

[
p2
i

2m + V (ri)
]

+ U0
∑
i<j

δ(ri − rj), (2.18)

onde V (r) é o potencial externo e pi → −ih̄∇i. A energia do estado Ψ é o valor esperado do
operador H,

E =
∫
d3r1d

3r2 · · · d3rNΨ∗(r1, r2, . . . , rN)HΨ(r1, r2, . . . , rN)

= N
∫
d3r

[
− h̄2

2mϕ∗(r)∇2ϕ(r) + V (r)|ϕ(r)|2
]

+
∫
d3r1 · · · d3rN

U0
∑
i<j

δ(ri − rj)
N∏
k=1

|ϕ(rk)|2


= N
∫
d3r

[
− h̄2

2mϕ∗(r)∇2ϕ(r) + V (r)|ϕ(r)|2
]

+ N(N − 1)
2

∫
d3rU0|ϕ(r)|4

= N
∫
d3r

[
− h̄2

2mϕ∗(r)∇2ϕ(r) + V (r)|ϕ(r)|2 + (N − 1)
2 U0|ϕ(r)|4

]
(2.19)

Vamos agora apenas redefinir a função de onda do estado condensado:

ψ(r) = N1/2ϕ(r) =⇒
∫
d3r|ψ(r)|2 = N, (2.20)

de modo que a densidade de partículas é dada por n(r) = |ψ(r)|2 = N |ϕ(r)|2. Em termos de
ψ∗(r), a energia é escrita como

E[ψ∗] =
∫
d3r

[
− h̄2

2mψ∗∇2ψ + V (r)|ψ|2 + (1 − 1/N)
2 U0|ψ|4

]
. (2.21)

Para N ≫ 1, obtemos

E[ψ∗] =
∫
d3r

[
− h̄2

2mψ∗∇2ψ + V (r)|ψ|2 + U0

2 |ψ|4
]
. (2.22)

Vamos agora minimizar a energia com o vínculo N =
∫
d3r|ψ(r)|2. Utilizando o método dos

multiplicadores de Lagrange, impomos que δE − µδN = 0. Então,

∫
d3r

(
− h̄2

2m
∂

∂ψ∗ (ψ∗∇2ψ) + V (r) ∂

∂ψ∗ (|ψ|2) + U0

2
∂

∂ψ∗ (|ψ|4) − µ
∂

∂ψ∗ (|ψ|2)
)
δψ∗ = 0 (2.23)
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Efetuando as derivadas,∫
d3r

(
− h̄2

2m∇2ψ(r) + V (r)ψ(r) + U0|ψ(r)|2ψ(r) − µψ(r)
)
δψ∗ = 0 (2.24)

Como a igualdade acima deve valer para qualquer variação δψ∗, obtemos(
− h̄2

2m∇2 + V (r) + U0|ψ(r)|2
)
ψ(r) = µψ(r), (2.25)

que é a equação de Gross-Pitaevskii independente do tempo. Ela tem o mesmo formato da
equação de Schrödinger, onde agora o potencial que atua nas partículas é a soma do potencial
externo V (r) com o termo não-linear U0|ψ(r)|2, que leva em conta o campo médio produzido
pelos outros bósons. Nessa aproximação, a energia de interação de um átomo em uma posição
r é dada pela densidade dos outros átomos nesse mesmo ponto vezes a interação efetiva. O
autovalor desta equação é o potencial químico µ, e não a energia por partícula como na equação
de Schrödinger. Para partículas não interagentes no mesmo estado, o potencial químico é igual
à energia por partícula, mas para partículas interagentes não.

Essa equação também pode ser resolvida numericamente para armadilhas de diferentes
geometrias, de onde obtemos grandezas de interesse do problema, como a energia por partícula e
o perfil de densidade do sistema. Neste trabalho, foi feita a comparação entre o método de Monte
Carlo e a teoria de campo médio através da simulação numérica da equação de Gross-Pitaevskii
dependente do tempo para um potencial harmônico V (r). O algoritmo pronto utilizado para
para simular essa equação com os mesmos parâmetros do código desenvolvido neste trabalho
está disponível em (9).
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3 Resultados
3.1 Oscilador harmônico unidimensional - Método do encontro

Com o método do encontro (equação 2.2), foi possível determinar o estado fundamental e os
estados excitados de uma partícula em um oscilador harmônico quântico unidimensional,

V (x) = 1
2mω

2x2 (3.1)

Para a equação de Schrödinger desse sistema ser adimensional, tomamos x̄ = x/L, onde
L ≡

√
h̄/mω e Ē = E/h̄ω. Os parâmetros utilizados foram ∆x = 5 × 10−4, xL = −5, xR = 5 e

xM = 0.2. Foi utilizada uma tolerância ε = 10−3 para a determinação dos valores de energia, e a
variação da energia foi iniciada com o valor ∆E = 0.2. Quanto às condições de contorno, foi
definido para a solução que ψL(xL) = ψR(xR) = 0 e ψL(xL + ∆x) = ψR(xR − ∆x) = 0.1∆x.

Na Figura 2, vemos as autofunções normalizadas dos primeiros 3 estados do oscilador
harmônico. Vale ressaltar que os gráficos dos estados excitados foram apenas deslocados da
origem para melhor visualizar todas as funções em uma única figura, mas todas as funções estão
normalizadas.
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Figura 2 – Autoestados de menor energia do oscilador harmônico quântico. Fonte: Elaborado
pelo autor.

Uma propriedade importante que podemos notar para essas funções é que todas elas têm
paridade bem definida, o que já era esperado pelo oscilador harmônico se tratar de um potencial
par. Na Tabela 1, comparamos as autoenergias obtidas numericamente com as respectivas
respostas analíticas, En/h̄ω ≡ Ēn = n+ 1/2.
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Tabela 1 – Comparação das energias analíticas com os resultados numéricos. Fonte: Elaborado
pelo autor.

n En analítica En numérica |∆E|
0 0.5000 0.5008 0.0008
1 1.5000 1.5008 0.0008
2 2.5000 2.5008 0.0008
3 3.5000 3.5008 0.0008
4 4.5000 4.5008 0.0008

Vemos que, no intervalo de erro, os resultados do método do encontro estão de acordo com
a expressão analítica. O erro obtido já era esperado, pois a precisão da simulação foi definida
como sendo ε = 10−3 e o algoritmo integra a função de onda enquanto |∆E| > ε.

3.2 Oscilador harmônico tridimensional - VMC
Antes de resolver o Hamiltoniano dos bósons interagentes 2.12, consideramos N bósons não

interagentes em um oscilador harmônico tridimensional e anisotrópico,

H = 1
2

N∑
i=1

(
−∇2 + x2

i + y2
i + λ2z2

i

)
. (3.2)

Considerando o Hamiltoniano 3.2, por se tratar de um sistema bosônico, foi proposta uma função
de onda variacional dada pelo produtório simetrizado das autofunções de uma partícula (5),

ΨT (r1, r2, . . . , rN) =
N∏
i=1

g(α, β, ri) =
N∏
i=1

exp
[
−α(x2

i + y2
i + βz2

i )
]
, (3.3)

onde α e β são os parâmetros variacionais do problema. A ideia do método variacional é variar
α e β para determinar a energia mínima do sistema. Para cada conjunto de parâmetros (α, β),
a energia converge para um determinado valor (Figura 3a), que é dado pela amostragem das
posições das partículas de acordo com a ponderação definida pela função de onda variacional
ΨT (10). Na Figura 3, vemos a determinação do estado fundamental do Hamiltoniano 3.2, com
N = 100 e λ =

√
2, usando a função de onda variacional 3.3.
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Figura 3 – Exemplo de resultados para N fixo. Fonte: Elaborado pelo autor.

A consideração desse sistema foi um passo importante na realização deste trabalho pois ele
tem solução analítica, cuja função de onda é dada pelo produtório das funções de um corpo,
como em 3.3, com α = 0.5 e β = λ =

√
2 para a anisotropia no eixo z. O estado fundamental

desse sistema tem autoenergia dada por

E0 = N

(
1
2 + 1

2 + λ

2

)
= N

(
1 + λ

2

)
. (3.4)

Na Tabela 2, comparamos essas soluções com o resultado do método variacional.

Tabela 2 – Comparação das autoenergias 3.4 com o método VMC. Fonte: Elaborado pelo autor.

N E0 analítica E0 numérica |∆E|
10 17.07106781187 17.07106781189 2 × 10−11

50 85.35533905933 85.35533905926 7 × 10−11

100 170.7106781187 170.7106781185 2 × 10−10

250 426.7766952966 426.7766952964 2 × 10−10

500 853.5533905933 853.5533905929 4 × 10−10

1000 1707.106781187 1707.106781185 2 × 10−9

Nas simulações, foi utilizado um total de passos M = 5 × 104. O erro |∆E| foi calculado de
acordo com o desvio padrão σ da amostra de dados, que mede a dispersão dos dados em relação
ao valor médio da amostra. Vemos que os resultados concordam dentro do intervalo de incerteza.

3.3 Sistema de bósons interagentes
Com os resultados numéricos do caso não-interagente, foi possível estudar o efeito da interação

de pares a partir do método de Monte Carlo. Considerando o Hamiltoniano 2.12, onde λ =
√

2
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e a = 4 × 10−3, inicialmente foram obtidos os resultados da equação de Gross-Pitaevskii a partir
da sua simulação numérica (9). Na Figura 4, apresentamos um corte em y = 0 e z = 0 das
funções de onda para diferentes valores de N .
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Figura 4 – Autofunções da equação de GP com a = 4 × 10−3. Fonte: Elaborado pelo autor.

Com esse resultado, podemos notar algumas propriedades interessantes do sistema: primei-
ramente, como esperado, para N muito pequeno, a função de onda do sistema se assemelha a
uma gaussiana. Para N grande, vemos que a função de onda tem alcances maiores em x, pois
nesse regime o potencial repulsivo passa a competir com o potencial confinante.

No método de Monte Carlo, para que a solução esteja próxima do estado fundamental,
sabemos que ΨT deve se aproximar da densidade de probabilidade de encontrar os bósons
na armadilha. Então, podemos usar o resultado acima e notar o que deve ser feito com os
parâmetros α e β da expressão 2.14: dado que a largura da gaussiana deve aumentar, então α
deve diminuir em relação ao caso não-interagente, α0 = 0.5. Além disso, devido à anisotropia
λ > 1 no eixo z, a nova função de onda deve continuar sendo mais estreita nessa direção e
portanto β deve aumentar em relação a β0 = λ =

√
2.

Então, o primeiro passo foi determinar a dependência da energia com os parâmetros α e β
na simulação de Monte Carlo. Na Figura 5, vemos alguns exemplos.
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Figura 5 – Dependência da energia com os parâmetros variacionais α e β. Fonte: Elaborado
pelo autor.

Como vemos acima, para cada N , foram usados 25 pares de parâmetros variacionais (α, β),
com valores próximos aos do caso não interagente α = 0.5 e β =

√
2. Esse procedimento foi

repetido até N = 104 bósons, de onde foi possível avaliar a dependência da energia por partícula.
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Figura 6 – Energias por partícula calculadas através da equação de Gross-Pitaevskii (GP) e do
método variacional de Monte Carlo (MC). Fonte: Elaborado pelo autor.
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Na Figura 6, vemos que no caso interagente a energia por partícula não é mais constante.
Além disso, pode-se notar que os resultados da teoria de campo médio e do método de Monte
Carlo passam a não concordar para N da ordem de 103 − 104. Isso ocorre porque nesse caso
estamos lidando com o regime fortemente interagente. Como foi mencionado anteriormente, para
metais alcalinos aprisionados no limite fracamente interagente, temos na3 ≤ 10−5. No nosso
estudo, consideramos o comprimento de espalhamento a/aho = 4 × 10−3 para simular um gás de
87Rb, e portanto para N da ordem de 104 obtemos na3 ∼ 10−4.

Através das simulações de Monte Carlo, também foi possível obter o perfil de densidade dos
átomos dentro da armadilha harmônica. O procedimento foi feito para N = 64 com diferentes
comprimentos de espalhamento. Na Figura 7, podemos observar propriedades interessantes do
nosso resultado: no limite em que o comprimento de espalhamento é muito maior que aRb, a
densidade dos átomos é aproximadamente homogênea até uma certa distância finita d0 e tende
a zero nas bordas da armadilha. Esse resultado está de acordo com o esperado, pois o potencial
harmônico tende a aproximar os bósons da origem, enquanto o potencial repulsivo afasta um
em relação ao outro. Além disso, as densidades têm alcances maiores conforme o comprimento
de espalhamento aumenta, o que também está de acordo com a competição entre o potencial
repulsivo e o confinamento harmônico.
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Figura 7 – Perfis de densidade n(r) da armadilha harmônica. Fonte: Elaborado pelo autor.

3.4 Aspectos computacionais
Com os resultados apresentados na seção anterior, foi possível verificar a validade das respostas

da simulação numérica desenvolvida neste trabalho, pois as energias por partícula concordam



Capítulo 3. Resultados 23

de maneira satisfatória com a teoria de campo médio no regime fracamente interagente. Vale
notar que o custo computacional necessário para resolver a evolução em tempo imaginário na
equação de Gross-Pitaevskii é significativamente menor que o do método variacional de Monte
Carlo. Então, para resolver sistemas fracamente interagentes, a equação de Gross-Pitaevskii é a
alternativa mais adequada.

Quanto ao custo computacional do método variacional de Monte Carlo, a simulação desenvol-
vida neste trabalho calcula todas as possíveis interações de pares em uma dada configuração do
algoritmo de Metropolis, que no total são N(N − 1)/2, onde N é o número de bósons. Para N
grande, o total de interações é proporcional a N2. Portanto, considerando M passos de Monte
Carlo, a complexidade do algoritmo escala com O(N2M). Isso foi verificado durante a execução
do programa: quando N dobra, por exemplo, o tempo gasto é multiplicado por 4 para o mesmo
número M de passos. Além disso, como discutido anteriormente, o método de Monte Carlo
converge para a energia do estado fundamental após um certo tempo de equilibração. Então,
para que o resultado esteja dentro do esperado, é necessário que M seja suficientemente grande.

Esse fator levou ao uso do cluster Heaviside disponibilizado pelo IFSC-USP, de modo que foi
possível executar todos os conjuntos de parâmetros variacionais simultaneamente. A execução
dos códigos foi feita através do sistema de filas, que distribui as simulações da forma mais
eficiente entre os nós do cluster (cada nó possui 2 processadores de 8 núcleos físicos). Para
N ∼ 104, o tempo de execução foi da ordem de 1 semana, utilizando M = 2.5 × 104.

Contudo, existem caminhos de otimização para esse processo. Um deles, que foi utilizado neste
trabalho, é executar a simulação até um número de passos menor que M e salvar as posições dos
átomos em um arquivo de output, que é posteriormente usado como o input da nova simulação.
Isso garante que a energia média comece a partir da energia local da última configuração do
arquivo output e as configurações mais prováveis contribuam mais rapidamente. Outra possível
aceleração do processo de convergência ocorre a partir da geração das configurações iniciais r0 com
números aleatórios que obedecem uma distribuição gaussiana de probabilidades. Isso também
foi feito neste trabalho, através da transformação de Box-Müller (11), que converte números
aleatórios de distribuições uniformes em distribuições gaussianas. Nesse caso, as configurações
iniciais têm formatos mais próximos da distribuição de probabilidade que queremos amostrar
(dada por |ψT (r)|2) e foi possível a convergência do algoritmo para N grande em tempo hábil.
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4 Conclusão
Neste trabalho, produzimos um código que implementa o método variacional de Monte

Carlo e o utilizamos para calcular propriedades de um sistema de muitos-corpos formado por
bósons interagentes em uma armadilha harmônica, tais como a energia por partícula e o perfil
de densidade. Comparamos os resultados obtidos com soluções numéricas da equação de Gross-
Pitaevskii utilizando o código disponível em (9). Os resultados concordaram com a teoria de
campo médio no limite fracamente interagente, o que validou o algoritmo que foi construído e
permitiu a consideração do caso fortemente interagente, o qual não é descrito pela equação de
Gross-Pitaevskii.

Com base nos resultados deste trabalho, podemos concluir que o método variacional de
Monte Carlo é uma ferramenta poderosa e versátil no cálculo de propriedades de sistemas
quânticos. As vantagens da implementação deste método consistem na amostragem de qualquer
distribuição de probabilidade |ψT (r)|2 e o estudo de sistemas fortemente interagentes, como foi
observado no limite de altas densidades.

Esses fatores tornam possível aplicar o algoritmo de Metropolis para calcular observáveis e
distribuições espaciais em sistemas de interesse teórico e experimental, como gases bosônicos
em outros tipos de armadilhas e 4He líquido, por exemplo. Como perspectiva futura, vale notar
que o código desenvolvido em Fortran90 neste trabalho pode ser diretamente adaptado para
estudar esses sistemas, com algumas alterações na função de onda variacional e no Hamiltoniano.
Empregamos funções de onda simétricas pela troca de partículas, pois estudamos sistemas
bosônicos. No futuro, podemos considerar implementar funções de onda antissimétricas para
descrever sistemas fermiônicos de interesse para a física atômica, tais como gases de Fermi
degenerados.
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